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Abstract

We consider a chance constrained problem, where one seeks to minimize a convex objective
over solutions satisfying, with a given (close to one) probability, a system of randomly per-
turbed convex constraints. Our goal is to build a computationally tractable approximation of
this (typically intractable) problem, i.e., an explicitly given convex optimization program with
the feasible set contained in the one of the chance constrained problem. We construct a general
class of such convex conservative approximations of the corresponding chance constrained prob-
lem. Moreover, under the assumptions that the constraints are affine in the perturbations and
the entries in the perturbation vector are independent of each other random variables, we build
a large deviations type approximation, referred to as ‘Bernstein approximation’, of the chance
constrained problem. This approximation is convex, and thus efficiently solvable. We propose a
simulation-based scheme for bounding the optimal value in the chance constrained problem and
report numerical experiments aimed at comparing the Bernstein and well-known scenario ap-
proximation approaches. Finally, we extend our construction to the case of ambiguously chance
constrained problems, where the random perturbations are independent with the collection of
distributions known to belong to a given convex compact set rather than to be known exactly,
while the chance constraint should be satisfied for every distribution given by this set.
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1 Introduction

Let us consider the following optimization problem

Min
x∈X

f(x) subject to Prob
{
F (x, ξ) ≤ 0

} ≥ 1− α. (1.1)

Here ξ is a random vector with probability distribution P supported on a set Ξ ⊂ Rd, X ⊂ Rn is
a nonempty convex set, α ∈ (0, 1), f : Rn → R is a real valued convex function, F = (f1, ..., fm) :
Rn×Ξ → Rm, and Prob(A) denotes probability of an event A. Probability constraints of the form
appearing in (1.1) arise naturally in various applications and are called chance (or probabilistic)
constraints. Such constraints can be viewed as a compromise with the requirement of enforcing the
constraints F (x, ξ) ≤ 0 for all values ξ ∈ Ξ of the uncertain data vector, which could be too costly
or even impossible. Chance constrained optimization problems were introduced in Charnes et al
[7], Miller and Wagner [14] and Prékopa [18].

There are two basic problems with the above formulation (1.1). The first is a modeling problem.
That is, in order to evaluate, for a given x ∈ X, probability of the event “F (x, ξ) ≤ 0” we need to
know the probability distribution of random vector ξ. (In the sequel we denote by ξ random data
vector as well as its realization; which one of these two meanings will be used in a particular situation
will be clear form the context.) In practical applications the involved probability distributions are
never known exactly and could be estimated, may be from historical data, at best. This raises the
question of how such ambiguity with respect to a chosen probability distribution affects robustness
of an optimal solution of the corresponding chance constrained problem. Also the choice of the
significance level (reliability parameter, or risk) α often is quite arbitrary, i.e., why we prefer to
take α = 5% over say α = 2%, or even more dramatically of α = 10−4 over α = 10−6? In the
absence of knowledge of the underlying probability distribution, an exact specification of α becomes
questionable especially for very small values of α when a high reliability is required.

The second problem is numerical. Although some approaches to solving (1.1) were suggested in
the literature, they typically are applicable either in rather specific situations or when the number
of involved variables is relatively small (cf., [19]). An explanation of this is that generically, with
minor exceptions, chance constrained problems are “severely computationally intractable”. The
reason is twofold: first, typically ξ is multi-dimensional, and in this case it is usually difficult even
to check whether or not a given chance constraint is satisfied at a given point x, there are no
ways to compute efficiently the corresponding probabilities to high accuracy (the latter should be
of order of α, and α can be really small). Typically, the only way to estimate the probability
for a chance constraint to be violated at a given point is to use Monte-Carlo simulation, and this
becomes too costly when α is small. The second, and more severe difficulty with chance constraints
“as they are”, is that even with nice, say affine in x and in ξ, functions F (x, ξ) the feasible set of
a chance constraint usually is nonconvex, which makes optimization under this constraint highly
problematic. It should be stressed that both outlined difficulties are “rules rather than exceptions”.
The only known to us generic case when these difficulties do not arise is the chance constrained
version of a single linear inequality with normally distributed random coefficients and α ≤ 1/2.

Since chance constrained problems “as they are” are computationally intractable, a natural way
to process such problems is to look for their tractable approximations, i.e., for efficiently verifiable
sufficient conditions for the validity of the chance constraint in (1.1). In addition to being sufficient,
these conditions should define a convex and “computationally tractable” set in the x-space, e.g.,
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should be represented by a system of convex inequalities G(x, u) ≤ 0 in x and, perhaps, in additional
variables u ∈ Rs. Whenever this is the case, the problem

min
x∈X,u

f(x) subject to G(x, u) ≤ 0 (1.2)

is a Convex Programming program. As such it is efficiently solvable, provided that G(x, u) is
efficiently computable, and provides a “safe approximation” of the chance constrained problem of
interest – the x-component of a feasible solution to (1.2) is feasible for (1.1).

A general way to build computationally tractable approximations of chance constrained prob-
lems is offered by the scenario approach based on Monte Carlo sampling techniques. That is, one
generates a sample ξ1, ..., ξN of N (independent) realizations of the random vector ξ and approxi-
mates (1.1) with the problem

min
x∈X

f(x) subject to F (x, ξν) ≤ 0, ν = 1, ..., N. (PN )

The main advantage of this approach is its generality, it imposes no restrictions on the distribution
of ξ and on how the data enter the constraints. In order to build (PN ) there is no need even
to know what is the distribution of ξ, all we need is to be able to sample from this distribution.
Last, but not least, is the “tractability status” of the approximation. The approximation (PN ) is
efficiently solvable, provided that the function F (x, ξ) is componentwise convex in x and is efficiently
computable, and the sample size N is not too large. We do not know exactly to whom the scenario
approach to handling uncertain constraints should be attributed. To the best of our knowledge, it
originates from [15], where, however, it was presented as an ad hoc remedy to struggle with data
uncertainty in optimization, with no analysis and no links to chance constraints.

An important theoretical question related to the scenario approximation is the following. The
approximation itself is random, and its solution may not satisfy the chance constraints. The
question is, how large should be the sample size N in order to ensure, with probability at least
1 − δ, that the optimal solution to (PN ) is feasible for the problem of interest (1.1). To some
extend this question was resolved in recent papers of Calafiore and Campi [5, 6] and de Farias and
Van Roy [9]. Their results were then extended in [11] to a more complicated case of ambiguous
chance constraints (that is, the case when the “true” distribution of ξ is assumed to belong to a
given family of distributions rather than to be known exactly, while the samples are drawn from
a specified reference distribution). The answer to the outlined question, as given in [6], is, that if
F (x, ξ) is componentwise convex in x, then, under mild additional conditions, with the sample size
N satisfying

N ≥ N∗ := Ceil
[
2n

α
log

(
12
α

)
+

2
α

log
(

2
δ

)
+ 2n

]
, (1.3)

the optimal solution to (PN ) is, with probability at least 1− δ, feasible for the chance constrained
problem (1.1). A remarkable feature of this result is that it, similarly to the scenario approximation
itself, is completely distribution-free.

Aside from the conservativeness (which is a common drawback of all approximations), an intrin-
sic drawback of the scenario approximation based on (1.3) is that, as it is easily seen, the sample size
N should be at least inverse proportional to the risk α and thus could be impractically large when
the risk is small. Moreover, the sample size as given by (1.3) (and by all other known results of this
type) grows linearly with n, which makes it difficult to apply the approach already to medium-size
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problems (with α = 0.01 and n = 200, δ = 0.01, the estimate (1.3) results in N∗ = 285, 063). Note
that for a properly modified scenario approximation, “bad” dependence of N on α given by (1.3)
can be replaced with

N = O(1)
[
log(1/δ) + dm2 log(d log(1/α))

]
, (1.4)

provided that F (x, ξ) is affine in ξ and ξ has a “nice” distribution, e.g., uniform in a box or normal
[17].

An alternative to the scenario approximation is an approximation based on “analytical” upper
bounding of the probability for the randomly perturbed constraint F (x, ξ) ≤ 0 to be violated. The
simplest approximation scheme of this type was proposed in [2] for the case of a single affine in ξ
inequality

f0(x) +
∑

j

ξjfj(x) ≤ 0. (1.5)

Assuming that ξj are independent of each other random variables with zero means varying in
segments [−σi, σi], it is easy to see that if x satisfies the constraint

f0(x) + Ω




d∑

j=1

σ2
j f

2
j (x)




1/2

≤ 0, (1.6)

where Ω > 0 is a “safety” parameter, then x violates the randomly perturbed constraint (1.5) with
probability at most exp

{−κΩ2
}
, where κ > 0 is an absolute constant (as we shall see in Section 6,

one can take κ = 1/2). It follows that if all components fi(x, ξ) are of the form

fi(x, ξ) = fi0(x) +
d∑

j=1

ξjfij(x), (1.7)

then the optimization program

Min
x∈X

f(x) subject to fi0(x) + Ω




d∑

j=1

σ2
j f

2
ij(x)




1/2

≤ 0, i = 1, ...,m, (1.8)

with Ω :=
√

2 log(mα−1), is an approximation of the chance constrained problem (1.1). This ap-
proximation is convex, provided that all fij(x) are convex and every one of the functions fij(x)
with j ≥ 1 is either affine, or nonnegative. Another, slightly more convenient computationally,
analytical approximation of randomly perturbed constraint (1.5) was proposed in [4]. Analyti-
cal approximations of more complicated chance constraints, notably a randomly perturbed conic
quadratic inequality, are presented in [16]. An advantage of the “analytical” approach as compared
to the scenario one is that the resulting approximations are deterministic convex problems with
sizes independent of the required value of risk (reliability) α, so that these approximations remain
practical also in the case of very small values of α. On the negative side, building an analytical
approximation requires structural assumptions on F (x, ξ) and on the stochastic nature of ξ (in
all known constructions of this type, ξj should be independent of each other and possess “nice”
distributions).

In this paper, we propose a new class of analytical approximations of chance constraints, referred
to as Bernstein approximations. Our major assumptions are that the components of F (x, ξ) are of
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the form (1.7) with convex fij(x), and ξj are independent of each other and possess distributions
with efficiently computable moment generating functions. Besides this, we assume that for every
j ≥ 1 for which not all of the functions fij(x), i = 1, ..., m, are affine, the corresponding random
variable ξj is nonnegative. Under these assumptions, the approximation we propose is an explicit
convex program.

The rest of the paper is organized as follows. In section 2 we introduce a class of convex
conservative approximations of (1.1). Bernstein approximation of (1.1) is derived and discussed
in section 3. In section 4, we propose a simple simulation-based scheme for bounding the true
optimal value in (1.1), which allows to evaluate numerically the quality (that is, the conservatism)
of various approximations. In section 5, we report some preliminary numerical experiments with
Bernstein approximation. Our numerical results demonstrate that this approximation compares
favorably with the scenario one. In concluding section 6, we extend Bernstein approximation to
the case of mixed uncertainty model, where the tuple of distributions of (mutually independent)
components ξj of ξ is assumed to belong to a given convex compact set rather than to be known
exactly and, on the top of it, the constraints are affected by additional “uncertain but bounded”
perturbations of non-stochastic nature (cf., [11], where similar extensions of the scenario approach
are considered).

2 Convex approximations of chance constrained problems

In this section we discuss convex approximations of chance constrained problems of the form (1.1).
As it was mentioned in Introduction, chance constrained problems, even simple-looking, typically
are computationally intractable. A natural way to overcome, to some extent, this difficulty is to
replace chance constraint problem (1.1) with a tractable approximation. That is, with an efficiently
solvable problem of the form (1.2). To this end we require the function G(x, u) to be convex in
(x, u). We also would like the constraints G(x, u) ≤ 0 to be conservative, in the sense that if for
x ∈ X and u it holds that G(x, u) ≤ 0, then Prob

{
F (x, ξ) ≤ 0

} ≥ 1 − α. Thus, feasible solutions
to (1.2) induce feasible solutions to (1.1), so that the optimal solution of the approximation is a
feasible sub-optimal solution of the problem of interest. If these two conditions hold, we refer to
(1.2) as a convex conservative approximation of the true problem (1.1). Our goal in this section is
to construct a special class of convex conservative approximations.

Let us consider first the scalar case of m = 1, i.e., F : Rn × Ξ → R. Then the probabilistic
(chance) constraint of problem (1.1) is equivalent to the constraint

p(x) := Prob
{
F (x, ξ) > 0

} ≤ α. (2.1)

By 1lA we denote the indicator function of a set A, i.e., 1lA(z) = 1 if z ∈ A and 1lA(z) = 0 if z 6∈ A.
Let ψ : R→ R be a nonnegative valued, nondecreasing, convex function satisfying the following

property:

(∗) ψ(z) > ψ(0) ≥ 1 for any z > 0.

We refer to function ψ(z) satisfying the above properties as a (one dimensional) generating function.
It follows from (∗) that for t > 0 and random variable Z,

E[ψ(tZ)] ≥ E [
1l[0,+∞)(tZ)

]
= Prob{tZ ≥ 0} = Prob{Z ≥ 0}.

4



www.manaraa.com

By taking Z = F (x, ξ) and changing t to t−1, we obtain that

p(x) ≤ E [
ψ

(
t−1F (x, ξ)

)]
(2.2)

holds for all x and t > 0. Denote

Ψ(x, t) := tE
[
ψ

(
t−1F (x, ξ)

)]
. (2.3)

We obtain that if there exists t > 0 such that Ψ(x, t) ≤ tα, then p(x) ≤ α. In fact this observation
can be strengthened to:

inf
t>0

[Ψ(x, t)− tα] ≤ 0 implies p(x) ≤ α. (2.4)

Indeed, let us fix x and set φ(t) := Ψ(x, t) − tα, Z := F (x, ξ). It may happen (case (A)) that
Prob {Z > 0} > 0. Then there exist a, b > 0 such that Prob {Z ≥ a} ≥ b, whence

Ψ(x, t) = tE
[
ψ(t−1F (x, ξ))

] ≥ tbψ(t−1a) ≥ tb

[
ψ(0) +

ψ(a)− ψ(0)
t

]

provided that 0 < t < 1 (we have taken into account that ψ(·) is convex). Since ψ(a) > ψ(0), we
conclude that

Ψ(x, t) ≥ γ := b(ψ(a)− ψ(0)) > 0, for 0 < t < 1,

and hence lim inft→+0 φ(t) > 0. Further, we have

lim inf
t→∞E

[
ψ(t−1Z)

] ≥ ψ(0) ≥ 1,

and hence lim inft→∞ φ(t) = ∞ due to α ∈ (0, 1). Finally, φ(t) is clearly lower semicontinuous in
t > 0. We conclude that if (A) is the case, then inf

t>0
φ(t) ≤ 0 if and only if there exists t > 0 such

that φ(t) ≤ 0, and in this case, as we already know, p(x) indeed is ≤ α. And if (A) is not the case,
then the conclusion in (2.4) is trivially true, so that (2.4) is true.

We see that the inequality
inf
t>0

[
Ψ(x, t)− tα

] ≤ 0 (2.5)

is a conservative approximation of (2.1) – whenever (2.5) is true, so is (2.1). Moreover, assume that
for every ξ ∈ Ξ the function F (·, ξ) is convex. Then G(x, t) := Ψ(x, t)− tα is convex1) in (x, t > 0).
Furthermore, since ψ(·) is nondecreasing and F (·, ξ) is convex, it follows that (x, t) 7→ tψ(t−1F (x, ξ))
is convex. This, in turn implies convexity of the expected value function Ψ(x, t), and hence convexity
of G(x, t).

We obtain, under the assumption that X, f(·) and F (·, ξ) are convex, that

Min
x∈X, t>0

f(x) subject to inf
t>0

[Ψ(x, t)− tα] ≤ 0 (2.6)

1)We have used the well-known fact that if f(x) is convex, so is the function g(x, t) = tf(t−1x), t > 0. Indeed,
given x′, x′′, λ ∈ (0, 1) and t′, t′′ > 0 and setting t = λt′ + (1− λ)t′′, x = λx′ + (1− λ)x′′, we have

λt′f(x′/t′) + (1− λ)t′′f(x′′/t′′) = t
[

λt′
t

f(x′/t′) + (1−λ)t′′
t

f(x′′/t′′)
]

≥ tf
(

t′λ
t

x′
t′ + (1−λ)t′′

t
x′′
t′′

)
= tf(x/t).
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gives a convex conservative approximation of the chance constrained problem (1.1).
Clearly the above construction depends on a choice of the generating function ψ(z). This raises

the question of what would be a “best” choice of ψ(z). If we consider this question from the point of
view of a better (tighter) approximation of the corresponding chance constraints, then the smaller
is ψ(·), the better is bound (2.2). Now if ψ(0) > 1, then the outlined bounds can be improved by
replacing ψ(·) with ψ(·)/ψ(0). Thus we may assume that ψ(0) = 1. Further, if the right derivative
ψ′+(0) is zero, then ψ(z) ≥ ψ(0) = 1 for all z ∈ R, and the above construction produces trivial
bounds. Therefore we may assume that a := ψ′+(0) > 0. Since ψ(0) = 1 and ψ(·) is convex and
nonnegative, we conclude that ψ(z) ≥ max{1 + az, 0} for all z, so that the upper bounds (2.2) can
be only improved when replacing ψ(z) with the function ψ̂(z) := max{1 + az, 0}, which also is a
generating function. But the bounds produced by the latter function are, up to scaling z ← z/a,
the same as those produced by the function

ψ∗(z) := [1 + z]+, (2.7)

where [a]+ := max{a, 0}. That is, from the point of view of the most accurate approximation, the
best choice of the generating function ψ is the piecewise linear function ψ∗ defined in (2.7).

For the generating function ψ∗ defined in (2.7) the approximate constraint (2.5) takes the form

inf
t>0

[
E

[
[F (x, ξ) + t

]
+
]− tα

]
≤ 0. (2.8)

In that form it is related to the concept of Conditional Value at Risk (CVaR) due to Rockafellar
and Uryasev [20]. Recall that CVaR of a random variable Z is

CVaR1−α(Z) := inf
τ∈R

[
τ +

1
α
E[Z − τ ]+

]
. (2.9)

Equivalently, CVaR1−α(Z) = E
[
Z

∣∣Z > VaR1−α(Z)
]
, where

VaR1−α(Z) := inf [t : Prob(Z ≤ t) ≥ 1− α]

is the corresponding quantile (also called Value at Risk) of the distribution of Z. Note that the
minimizer of the right hand side of (2.9) is τ∗ = VaR1−α(Z). Therefore, it always holds that
CVaR1−α(Z) ≥ VaR1−α(Z). It is also known that CVaR1−α(Z) is convex and nondecreasing in
Z. Clearly the chance constraint of (1.1) can be written as VaR1−α[F (x, ξ)] ≤ 0. Therefore, the
constraint

CVaR1−α[F (x, ξ)] ≤ 0 (2.10)

defines a convex conservative approximation of the chance constrained problem (1.1). The idea of
using CVaR as a convex approximation of VaR is due to Rockafellar and Uryasev [20]. Note that
since α > 0, the validity of (2.8) is independent of whether the infimum in the left hand side is
taken over t > 0 or over t ∈ R. Therefore, by the above discussion, the constraints (2.8) and (2.10)
are equivalent to each other.

Remark 1 One of possible drawbacks of using the “optimal” generating function ψ∗ (as compared
with the exponential ψ(z) := ez, which we will discuss in the next section) in the above approxima-
tion scheme is that it is unclear how to compute efficiently the corresponding function Ψ(x, t) even
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in the simple case F (x, ξ) := g0(x) +
∑d

j=1 ξjgj(x) of affine in ξ function F (x, ξ) and independent
of each other random variables ξj with known and simple distributions. It is unclear how serious
is this obstacle in the latter case. Note that [s]+ can be written in the following integral form

[s]+ = 1
2s +

1
π

∞∫

0

1− cos(ωs)
ω2

dω.

Therefore, we can write

E
[
1 + t−1F (x, ξ)

]
+

= 1
2

(
1 + t−1E[F (x, ξ)]

)
+

1
π

∞∫

0

1− h(ω)
ω2

dω, (2.11)

where h(ω) is the real part of the complex quantity E
[
exp

{
iω

(
t−1F (x, ξ) + 1

)}]
(here i is the

imaginary unit). In the case in question we can easily compute h(ω) for every ω, since

E
[
exp{iωF (x, ξ)}] = exp

{
ig0(x)

} d∏

j=1

E
[
exp

{
iωgj(x)ξj

}]
,

so that the computation reduces to taking d one-dimensional expectations with respect to simple
distributions. The difficulty with the outlined integral representation is that the right hand side
of (2.11) contains an oscillating integral which should be computed, also for large values of t−1,
within accuracy of order of α. We failed to build a routine capable to compute this integral both
fast and accurate; perhaps others will be able to resolve this problem, thus achieving the limits of
performance of the approach we are discussing.

There are several ways how the above construction can be extended for m > 1. One simple way
is to replace the constraints fi(x, ξ) ≤ 0, i = 1, ..., m, with one constraint f(x, ξ) ≤ 0, say by taking
f(x, ξ) := max{f1(x, ξ), ..., fm(x, ξ)}. Note, however, that this may destroy a simple, e.g., affine in
ξ, structure of the constraint mapping F (x, ξ). An alternative approach is the following.

Consider a closed convex cone K ⊆ Rm
+ and the corresponding partial order ºK , i.e., z ºK y iff

z− y ∈ K. Of course, for the nonnegative orthant cone K := Rm
+ the constraint F (x, ξ) ≤ 0 means

that F (x, ξ) ¹K 0. We can also consider some other convex closed cones and define constraints in
that form. The corresponding chance constraint can be written in the form

p(x) := Prob
{
F (x, ξ) 6∈ −K

}
< α. (2.12)

Let ψ : Rm → R be a nonnegative valued, convex function such that:

(?) ψ is K-monotone, i.e., if z ºK y, then ψ(z) ≥ ψ(y),

(?
?) ψ(z) > ψ(0) ≥ 1 for every z ∈ Rm \ (−K).

We refer to function ψ(z) satisfying these properties as a K-generating function.
By (?

?) we have that E[ψ(F (x, ξ))] provides an upper bound for p(x), and the corresponding
inequality of the form (2.2) holds. Suppose, further, that for every ξ ∈ Ξ the mapping F (·, ξ) is
K-convex, i.e., for any t ∈ [0, 1] and x, y ∈ Rn,

tF (x, ξ) + (1− t)F (y, ξ) ºK F (tx + (1− t)y, ξ).
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(Note that for K = Rm
+ , K-convexity means that F (·, ξ) is componentwise convex.) Then for

Ψ(x, t) := tE[ψ(t−1F (x, ξ))], problem of the form (2.6) gives a convex conservative approximation
of the chance constrained problem (1.1).

In such construction for m > 1, there is no “best” choice of the K-generating function ψ(z). A
natural choice in the case of K = Rm

+ could be

ψ̂(z) := max
1≤i≤m

[1 + aizi]+, (2.13)

where ai > 0 are “scale parameters”.
Yet there is another possible extension of the above approximation scheme for m > 1. Let

α1, ..., αm be positive numbers such that α1 + ... + αm ≤ α. The chance constraint of (1.1) is
equivalent to Prob

{ ∪m
i=1 {ξ : fi(x, ξ) > 0}} < α. Since

Prob
{ ∪m

i=1 {fi(x, ξ) > 0}} ≤
m∑

i=1

Prob
{
fi(x, ξ) > 0},

it follows that the system of constraints

Prob
{
fi(x, ξ) > 0} ≤ αi, i = 1, ...,m, (2.14)

is more conservative then the original chance constraint. We can apply now the one-dimensional
construction to each individual constraint of (2.14) to obtain the following convex conservative
approximation of the chance constrained problem (1.1):

Min
x∈X

f(x) subject to inf
t>0

[Ψi(x, t)− tαi] ≤ 0, i = 1, ...,m, (2.15)

where Ψi(x, t) := tE
[
ψi(t−1fi(x, ξ))

]
, and each ψi(·), i = 1, ..., m, is a one-dimensional generating

function.

Remark 2 An open question related to the approximation (2.15) is how to choose αi. It would
be very attractive to treat these quantities in (2.15) as design variables (subject to the constraints
αi > 0 and

∑
i αi ≤ α) rather than as parameters. Unfortunately, such an attempt destroys the

convexity of (2.15) and thus makes the approximation seemingly intractable. The simplest way to
resolve the issue in question is to set

αi := α/m, i = 1, ...,m. (2.16)

3 Bernstein approximation

One of drawbacks of using the piecewise linear generating functions of the form (2.7) (or (2.13)), is
that the corresponding constraint function may be difficult to compute even for relatively simple
functions F (x, ξ) (compare with Remark 1). In this section we consider the (one-dimensional)
generating function ψ(z) := ez. For such choice of the generating function, constructions of the
previous section are closely related to the classical Large Deviations theory (cf., [8]).

We assume in this section that:
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A1. The components ξj , j = 1, ..., d, of the random vector ξ are independent of each other random
variables.
We denote by Pj the probability distribution of ξj , supported on Ξj ⊂ R (so that the support
of the distribution P of ξ is Ξ = Ξ1 × ...× Ξd), by

Mj(t) := E
[
etξj

]
=

∫
exp(tz)dPj(z)

the moment generating function, and by Λj(t) := log Mj(t) the logarithmic moment generat-
ing function of ξj .

A2. The moment generating functions Mj(t), j = 1, ..., d, are finite valued for all t ∈ R and are
efficiently computable.
In fact, we could allow for the moment generating functions to be finite valued just in a
neighborhood of t = 0. We make the stronger assumption of requiring the moment generating
functions to be finite valued for all t in order to simplify the presentation.

A3. The components fi(x, ξ) in the constraint mapping F (x, ξ) are affine in ξ:

fi(x, ξ) = fi0(x) +
d∑

j=1

ξjfij(x), i = 1, ..., m, (3.1)

and the functions fij(x), j = 0, 1, ..., d, are well-defined and convex on X. Besides this, for
every j ≥ 1 such that Ξj 6⊂ R+, all functions fij(x), i = 1, ..., m, are affine. In addition, the
objective f(x) in (1.1) is well-defined and convex on X.

In the sequel, we refer to problem (1.1) satisfying the assumptions A1 - A3 as to affinely perturbed
convex chance constrained problem.

Let z = (z0, z1, ..., zd) ∈ Rd+1. By A1, the function

Φ(z) := log


E


exp

{
z0 +

d∑

j=1

ξjzj

}




 = z0 +

d∑

j=1

Λj(zj)

is well-defined and continuous in z. Besides this, it is convex (since, as it is well-known, the
logarithmic moment generating functions are so). Moreover, Φ(z) is monotone in z0 and in every
zj with j ∈ J := {j ≥ 1 : Ξj ⊂ R+}. Finally, one clearly has for t > 0 and p(z) := Prob

{
z0 +∑d

j=1 ξjzj > 0
}

that
Φ(t−1z) ≥ log p(z).

Consequently, for every β ∈ (0, 1),

∃t > 0 : tΦ(t−1z)− t log β ≤ 0 implies p(z) ≤ β.

Similarly to the reasoning which led us to (2.4), the latter implication can be strengthened to:

inf
t>0

[
tΦ(t−1z)− t log β

] ≤ 0 implies p(z) ≤ β. (3.2)

9
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Now consider an affine chance constrained problem with real-valued constraint mapping

F (x, ξ) = g0(x) +
d∑

j=1

ξjgj(x).

By (3.2), the problem

Min
x∈X

f(x) subject to inf
t>0


g0(x) +

d∑

j=1

tΛj(t−1gj(x))− t log α


 ≤ 0 (3.3)

is a conservative approximation of the chance constrained problem (1.1). In fact this approximation
is convex. Indeed, the function

G(z, t) := tΦ(t−1z)− t log β

is convex in (z, t > 0) (since Φ(z) is convex) and is monotone in z0 and every zj with j ∈ J , while,
by A3, all gj(x), j = 0, 1, ..., d, are convex in x ∈ X, and all gj(x) with j ≥ 1 such that j 6∈ J ,
are affine. It follows that the function G(g0(x), ..., gd(x), t) is convex in (x ∈ X, t > 0), whence the
constraint in (3.3) is convex; the objective is convex by A3, and X was once for ever assumed to be
convex when formulating (1.1). Thus, (3.3) is a convex conservative approximation of an affinely
perturbed chance constrained problem with m = 1, as claimed.

We can extend the outlined construction to the multivariate case of m > 1 in a way similar to
the construction of problem (2.15). That is, given an affinely perturbed chance constrained problem
(1.1), (3.1), we choose αi > 0,

∑
i αi ≤ α, and build the optimization problem

Min
x∈X

f(x)

s.t. inf
t>0

[
fi0(x) +

∑d
j=1 tΛj(t−1fij(x))− t log αi

]
≤ 0, i = 1, ..., m.

(3.4)

Similarly to the case of m = 1, this problem is a convex conservative approximation of (1.1). We
refer to (3.4) as the Bernstein approximation of (1.1). The reason is that this construction is based
on the ideas used by S.N. Bernstein when deriving his famous inequalities for probabilities of large
deviations of sums of independent random variables.

An advantage of Bernstein approximation over the one discussed in the previous section, is
that under assumptions A1 – A3 the Bernstein approximation is an explicit convex program with
efficiently computable constraints and as such is efficiently solvable.

Remark 3 A somehow less accurate version of Bernstein approximation was in fact proposed
in [2] for the situation where the random variables ξj are independent with zero mean and sup-
ported on segments [−σi, σi]. We have cited this result in Introduction, see (1.8). The justifi-
cation of (1.8) is based on a straightforward bounding from above (going back to Bernstein) of
the associated logarithmic moment generating function and demonstrating that if x satisfies (1.6),
then the resulting (conservative) version of the corresponding probability bound, as applied to
z = (fi0(x), fi1(x), ..., fid(x)), implies that

Prob



fi0(x) +

d∑

j=1

ξjfij(x) > 0



 ≤ exp{−κΩ2}.

10
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Clearly, the Bernstein approximation as presented here is less conservative than (1.8), since it is
based on the corresponding “true” function rather than on its upper bound given solely by the
expected values and the sizes of supports of ξj .

3.1 How conservative is Bernstein approximation?

The question posed in the title of this section reduces to the following one:

(?) Let z = (z0, ..., zd) ∈ Rd+1, and let ξj be independent random variables with distri-
butions Pj , j = 1, ..., d. How conservative could be the Bernstein sufficient condition

inf
t>0


t log


E


exp{t−1[z0 +

d∑

j=1

ξjzj ]}




− t ln β


 ≤ 0 (3.5)

for the validity of the chance constraint

p(z) := Prob



z0 +

d∑

j=1

ξjzj > 0



 ≤ β. (3.6)

To answer this question, we should of course decide how we measure the conservatism. The simplest
way to do it would be to ask: How small should be the actual value of p(z) in order for the sufficient
condition to hold true? The answer to this question, in general, can be very pessimistic. To give
an example, consider the case when d = 1, z = (−κ, 1 + κ) and ξ takes two values, 0 and 1, with
probabilities 1 − ε and ε, respectively, where κ > 0 and ε ∈ (0, 1) are parameters. In this case,
p(z) = ε. On the other hand, (3.5) in our case clearly reads

∃τ > 0 : (1− ε) exp{−κτ}+ ε exp{τ} ≤ β,

or, after minimizing the left hand side in τ > 0,

(1 + κ)(κ−1ε)
κ

1+κ (1− ε)
1

1+κ ≤ β.

We see that if ε << 1, then, in order to satisfy the latter condition, β should be of order of
ε

κ
1+κ = (p(z))

κ
1+κ , that is, the conservatism of (3.5) grows dramatically as κ approaches 0. For

example, with κ = 0.1 and p(z) ≡ ε = 0.01, (3.5) is able to certify only that p(z) ≤ 0.8841.
There is, however, another way to measure the conservatism, perhaps a more natural one.

Assume, as it is the case in many applications, that all ξj are symmetrically distributed around
their expected values. By an appropriate updating of z0, we can assume without loss of generality
that all these expected values are 0, so that ξj are independent of each other and symmetrically
distributed around 0. Now let us consider chance constraint (3.6) as a member of the parametric
family

pρ(z) := Prob



z0 + ρ

d∑

j=1

ξjzj > 0



 ≤ β, (3.7)

where ρ > 0 is an “uncertainty level”; the original constraint corresponds to ρ = 1. It is immediately
seen that if β < 1/2, then the larger is ρ, the larger is pρ(z), so that the feasible set Zρ of (3.7)
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in the z-space shrinks as ρ grows. We can now measure the conservatism of (3.5) by the smallest
ρ = ρ∗ ≥ 1 such that the feasible set of (3.5) is in-between the feasible set Z1 of the “true”
chance constraint (3.6) and the feasible set Zρ of “ρ times strengthened” version of (3.6). With
this approach, the less is ρ∗, the less conservative is the approximation; in particular, the “ideal”
situation ρ∗ = 1 corresponds to no conservatism at all. Note that this approach to measuring the
conservatism of (3.5) as an approximation of (3.6) is borrowed from the methodology of Robust
Optimization, see, e.g., [3], and was applied to chance constrained problems in [17]. The approach is
of the same spirit as the previous one: in both cases, we include the constraint to be approximated
in a parametric family and ask by how much should we “strengthen” the original constraint in
order for the feasible set of the approximation to be in-between the feasible sets of the constraint
of interest and its strengthened version. With the former approach, the family is comprised of all
constraints of the form (3.6) with the right hand side β in the role of the parameter; with the latter,
the parameterization is via the “noise intensity” ρ.

It turns out that with the second approach to measuring conservatism, Bernstein approximation
seems to be not that bad. Here is a result in this direction.

Proposition 1 Let ξj be uniformly distributed in segments [−σj , σj ], 1 ≤ j ≤ d, and let β < 0.05.
Then the conservatism of (3.5) is at most

ρ̂ = 1 + 12
√

2 log(1/(0.95β)), (3.8)

that is, the feasible set of (3.5) contains the feasible set of the chance constraint (3.7) corresponding
to ρ = ρ̂.

Proof. Without loss of generality we can assume that ξj are uniformly distributed in [−1/2, 1/2].
Let z be feasible for (3.7) with ρ = ρ̂; we should prove that z is feasible for (3.5). There is nothing
to prove when z1 = ... = zd = 0; assuming that the latter is not the case, we can without loss of
generality normalize z to get z2

1 + ... + z2
d = 1. Setting e = (z1, ..., zd)T ∈ Rd, consider the set

A =
{

y ∈ Rd : ρ̂−1z0 + eT y ≤ 0
}

;

note that

Prob{ξ ∈ A} ≡ Prob



z0 + ρ̂

d∑

j=1

ξjzj ≤ 0



 ≥ 1− β. (3.9)

In particular,

Prob
{|eT ξ| > −ρ̂−1z0

}
= 2Prob



z0 + ρ̂

d∑

j=1

ξjzj > 0



 ≤ 2β ≤ 0.1,

whence Prob
{|eT ξ| ≤ −ρ̂−1z0

} ≥ 0.9. From the latter inequality, by Lemma 2 in [17], it follows
that

µ := −ρ̂−1z0 ≥ 1
6
. (3.10)
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Now let D(y) := min
y′∈A

‖y − y′‖2 = max[0, eT y + ρ̂−1z0] = max[0, eT y − µ]. Since ξj are independent

and uniformly distributed on [−1/2, 1/2], from Talagrand Inequality (see, e.g., [12]) it follows that

E
[
exp{D2(ξ)

4
}
]
≤ 1

Prob{A} ≤
1

0.95
(3.11)

where the concluding inequality is given by (3.9). Now let

τ =
µ(ρ̂− 1)

2
, c = exp{−τµ(ρ̂− 1) + τ2} = exp{−µ2(ρ̂− 1)2

4
}.

Then, as it is immediately seen,

exp{τ [z0 + eT y]} ≤ c exp{D2(y)
4

} ∀y ∈ Rd,

whence, in view of (3.11),

E


exp{τ [z0 +

d∑

j=1

ξjzj ]}

 ≤ c

0.95
=

1
0.95

exp{−µ2(ρ̂− 1)2

4
} ≤ 1

0.95
exp{−(ρ̂− 1)2

144
},

where the concluding inequality is given by (3.10). Invoking (3.8), we arrive at

E


exp{τ [z0 +

d∑

j=1

ξjzj ]}

 ≤ β,

so that the expression under inft>0 in the left hand side of (3.5) is nonpositive when t = τ−1. Thus,
z is feasible for (3.5). ¥

Note that qualitatively speaking, the level of conservatism of the Bernstein approximation as
stated in (3.8) is not that disastrous – it is nearly independent of β. Note also that the assumption
that ξj are uniformly distributed plays no crucial role, and the results similar to the one of Propo-
sition 1 can be obtained for many other symmetric distributions with bounded support (cf., [17,
section 2]). We should add that there is another case when the Bernstein approximation is “nearly
accurate” – the one of normally distributed ξj , but this is of no interest, since here a scalar chance

constraint Prob

{
z0 +

d∑
j=1

ξjzj > 0

}
≤ β with β < 1/2 is exactly equivalent to an explicit convex

constraint and thus requires no approximation at all.

4 Upper and lower bounds

In general, the approximation-based approach to processing chance constrained problems requires
mechanisms for: (i) measuring the actual risk (reliability) associated with the resulting solution,
and (ii) bounding from below the true optimal value Opt∗ of the chance constraint problem (1.1).
Task (i) corresponds to the case when the approximation is not necessarily conservative, as it is the
case, e.g., with the scenario approximation. With the latter, even applied with the theoretically
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justified sample size (1.3), there still is a chance 1− δ that the resulting solution x̄ does not satisfy
the chance constraint, and we would like to check whether the solution indeed is feasible for (1.1).
Task (ii) is relevant to basically all approximations, since they usually are conservative (“for sure”,
as Bernstein approximation, or “with probability close to 1”, as the scenario approximation with
sample size (1.3)), and a lower bound on Opt∗ allows to quantify this conservatism.

A straightforward way to measure the actual risk of a given candidate solution x̄ ∈ X is to
use Monte Carlo sampling. That is, a sample ξ1, ..., ξN ′

of N ′ realizations of random vector ξ is
generated and the probability p(x̄) := Prob

{
F (x̄, ξ) 6≤ 0

}
is estimated as ∆/N ′, where ∆ is the

number of times the constraint F (x̄, ξν) ≤ 0, ν = 1, ..., N ′, is violated. A more reliable upper bound
on p(x̄) is the random quantity

α̂ := max
γ∈[0,1]

{
γ :

∆∑

r=0

(
N ′

r

)
γr(1− γ)N ′−r ≥ δ

}
,

where 1− δ is the required confidence level. The quantity α̂ is, with probability at least 1− δ, an
upper bound on p(x̄), so that if our experiment results in α̂ ≤ α, we may be sure, “up to probability
of bad sampling ≤ δ”, that x̄ is feasible for (1.1) and f(x̄) is an upper bound on Opt∗. Since the
outlined procedure involves only the calculation of quantities F (x̄, ξν), it can be performed with a
large sample size N ′, and hence feasibility of x̄ can be evaluated with a high reliability, provided
that α is not too small (otherwise the procedure would require an unrealistically large sample size).

It is more tricky to bound Opt∗ from below. Here we propose a bounding scheme as follows.
Let us choose three positive integers M , N , L, with L ≤ M , and let us generate M independent
samples ξ1,µ, ..., ξN,µ, µ = 1, ..., M , each of size N , of random vector ξ. For each sample we solve
the associated optimization problem

Min
x∈X

f(x) subject to F (x, ξν,µ) ≤ 0, ν = 1, ..., N, (4.1)

and hence calculate its optimal value Optµ.
We compute the quantities Optµ, µ = 1, ..., M , by treating the infeasibility and unboundedness

according to the standard optimization conventions: the optimal value of an infeasible optimization
problem is +∞, while for a feasible and unbounded from below problem it is−∞. We then rearrange
the resulting quantities {Optµ}µ=1,...,M in the nondescending order: Opt(1) ≤ ... ≤ Opt(M) (in the
statistics literature these are called the order statistics of the sample {Optµ}µ=1,...,M ). By definition,
the lower bound on the true optimal value is the random quantity Opt(L).

Let us analyze the resulting bounding procedure. Let x be a feasible point of the true problem
(1.1). Then x is feasible for problem (4.1) with probability at least θN = (1 − α)N . When x is
feasible for (4.1), we of course have Optµ ≤ f(x). Thus, for every µ ∈ {1, ..., M} and for every
ε > 0 we have

θ := Prob{Optµ ≤ Opt∗ + ε} ≥ θN .

Now, in the case of Opt(L) > Opt∗ + ε, the corresponding realization of the random sequence
Opt1, ...,OptM contains less than L elements which are less than or equal to Opt∗ + ε. Since the
elements of the sequence are independent, the probability ρ(θ, M, L) of the latter event is

ρ(θ,M,L) =
L−1∑

r=0

(
M

r

)
θr(1− θ)M−r.
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Since θ ≥ θN , we have that ρ(θ, M,L) ≤ ρ(θN ,M, L).
Thus,

Prob
{

Opt(L) > Opt∗ + ε
}
≤ ρ(θN ,M, L).

Since the resulting inequality is valid for all ε > 0, we arrive at the bound

Prob
{

Opt(L) > Opt∗
}
≤

L−1∑

r=0

(
M

r

)
(1− α)Nr

[
1− (1− α)N

]M−r
. (4.2)

We have arrived at the following simple result.

Proposition 2 Given δ ∈ (0, 1), let us choose positive integers M ,N ,L in such a way that

L−1∑

r=0

(
M

r

)
(1− α)Nr

[
1− (1− α)N

]M−r ≤ δ. (4.3)

Then with probability at least 1 − δ, the random quantity Opt(L) gives a lower bound for the true
optimal value Opt∗.

The question arising in connection with the outlined bounding scheme is how to choose M , N ,
L. Given a desired reliability 1− δ of the bound and M and N , it is easy to specify L: this should
be just the largest L > 0 satisfying condition (4.3). (if no L > 0 satisfying (4.3) exists, the lower
bound, by definition, is −∞). We end up with a question of how to choose M and N . For N
given, the larger is M , the better. For given N , the “ideal” bound yielded by our scheme as M
tends to infinity, is the lower θN -quantile of the true distribution of the random variable Opt1. The
larger is M , the better can we estimate this quantile from a sample of M independent realizations
of this random variable. In reality, however, M is bounded by the computational effort required
to solve M problems (4.1). Note that the effort per problem is larger the larger is the sample size
N . We have no definite idea how to choose N . As N grows, the distribution of Opt1 “goes up”
in the sense that Prob{Opt1 > a} increases for every a. As a result, every lower θ-quantile of this
distribution also increases. If our bound were the lower θ-quantile of the distribution of Opt1, it
would grow (that is, improve) with N . Unfortunately, our bound is the (empirical estimate of) the
lower θN -quantile of the distribution in question, with θN decreasing as N grows, and this decrease
shifts the bound down. For the time being, we do not know how to balance these two opposite
trends, except for a trivial way to test several values of N and to choose the best (the largest)
of the resulting bounds. To keep reliability δ by testing k different values of N , would require to
strengthen reliability of every one of the tests, e.g., in accordance with the Bonferroni inequality,
by replacing δ in the right hand side of (4.3) with δ/k.

5 Numerical illustration

We are about to present the results of an illustrative experiment. Our major goal is to compare
Bernstein approximations with the scenario approach (see Introduction).
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Test problem: optimizing Value at Risk. The toy test problem we are about to consider is
the following. There are n + 1 assets 0, 1, ..., n with random returns. The problem is to distribute
$ 1 between the assets in order to maximize the upper (1− α)-th quantile of the total profit (that
is, the total return of the resulting portfolio minus the initial capital of $ 1). The corresponding
model is the chance constrained Linear Programming problem:

Max
x≥0, t

t− 1 subject to Prob



t >

n∑

j=0

rjxj



 ≤ α,

n∑

j=0

xj ≤ 1, (Pα)

where xj is the capital invested in asset j, and rj is the return of this asset.
The data we used in our experiment are as follows:

There are n + 1 = 65 assets; asset #0 (“money”) has deterministic return r0 ≡ 1, while
the returns ri of the remaining 64 “true” assets are random variables with expectations
E[ri] = 1 + ρi, where the nominal profits ρi vary in [0, 0.1] and grow with i;

• Every ri, i ≥ 1, varies in the range [1 + (1 − 3θ)ρi, 1 + (1 + 3θ)ρi], where θ is “uncertainty
level”, with some degree of dependence between different returns.

The detailed description of the distribution of returns is as follows.
• The true assets are split into two halves: “solid assets” i = 1, ..., 32 and “bubbles” i =
33, ..., 64. Recall that the expected profits ρi = E[ri]− 1, grow with i, so that solid assets are,
at average, less profitable than the bubbles;
• The actual values of the returns are

ri = 1 + ρi + θ[2ηi +
4∑

κ=1

ζκPiκ]ρi, (5.1)

where ηi ∼ U(−1, 1) is the individual noise in i-th return, and ζκ ∼ U(−1, 1) are “common
factors” affecting all the returns. All “primitive” random variables (64 of ηi’s and 4 of ζκ’s)
are independent of each other.
• The “influence coefficients” Piκ in (5.1) are deterministic constants positive for 1 ≤ i ≤ 32
(“solid assets”) and negative for i > 32 (“bubbles”), so that common factors have positive
correlations with returns of solid assets and negative correlations with returns of bubbles.
• Piκ are chosen in such a way that

∑
κ
|Piκ| = 1; thus, the total contribution of all common

factors into a particular ri varies within ±θρi, while the individual noise in the return varies
within ±2θρi.

The experiments were conducted for the value of risk α = 0.05 and the uncertainty levels
θ = 0.2, θ = 0.5 and θ = 1.0. The reliability 1 − δ for the scenario approximation (see (1.3)) was
set to 0.999. Similarly, the reliability of all other simulation-based inferences (like those on actual
risks of various solutions, bound on the true optimal value in the chance constrained problem, etc.)
was set to 0.999. The results are presented in Table 1; the reader should be aware that we work
with a maximization problem, so that the larger is the value of the objective yielded by a method,
the better, what was before a lower bound on the optimal value in the chance constrained problem
becomes an upper bound, etc.
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Quantity Value
Empirical

riska)

Inferred
riska)

Nominal optimal valueb) 0.0975 — —
Upper boundc) 0.0673 — —
Bernstein optimal value (tuned)db) 0.0620 0.043 0.0498

θ = 0.2 Bernstein optimal valueda) 0.0588 0.008 0.0107
Scenario optimal value (tuned)eb) 0.0602 0.044 0.0504
Scenario optimal valueea) (N = 14, 900) 0.0559 0.002 0.0038
Robust optimal valuef) 0.0435 — —
Nominal optimal value 0.0975 — —
Upper bound 0.0621 — —
Bernstein optimal value (tuned) 0.0519 0.039 0.0450

θ = 0.5 Bernstein optimal value 0.0470 0.006 0.0094
Scenario optimal value (tuned) 0.0498 0.040 0.0463
Scenario optimal value (N = 14, 900) 0.0441 0.003 0.0054
Robust optimal value 0.0000g) — —
Nominal optimal value 0.0975 — —
Upper bound 0.0573 — —
Bernstein optimal value (tuned) 0.0406 0.043 0.0493

θ = 1.0 Bernstein optimal value 0.0330 0.007 0.0102
Scenario optimal value (tuned) 0.0369 0.039 0.0456
Scenario optimal value (N = 14, 900) 0.0287 0.004 0.0059
Robust optimal value 0.0000 — —

Table 1. Results of experiments with the Value at Risk model.

Explanations: a)Empirical risk makes sense only with respect to the optimal values yielded by var-
ious methods and is the empirical frequency estimate, taken over 10,000 simulations, of the probability p of
violating the randomly perturbed constraint in (P0.05) at the solution yielded by the method. Inferred risk
is the 0.999-reliable upper bound on p, as inferred from the same 10,000 simulations.

b)Nominal optimal value is the optimal value in the nominal problem – the one where all randomly
perturbed coefficients are set to their expected values. It is immediately seen that for symmetrically dis-
tributed ξ (as is the case in our test problem), the nominal optimal value is an upper (we are in the case of
maximization!) bound on the “chance constrained” optimal value, provided that α < 0.5.

c)See section 4; since (P0.05) is a maximization problem, the corresponding construction yields an upper
bound on the optimal value in (P0.05). The reliability of the bound is 0.999.

da)Bernstein optimal value is the optimal value in Bernstein approximation (3.4) of (P0.05).
db)Tuned Bernstein optimal value is the optimal value in “tuned” Bernstein approximation. Tuning,

aimed to overcome, to some extent, the intrinsic conservativeness of the approximation as given by (3.4),
goes via replacing in (3.4), (2.16) the required value α of risk by a larger value, α+, still resulting in a solution
satisfying the actual chance constraint (the latter is verified by simulations, the reliability of the verification
being 0.999). Under this restriction on α+, we try to make α+ as large as possible, since the larger is α+,
the better is the optimal value in the corresponding Bernstein approximation.

ea)Scenario optimal value is the optimal value in the scenario approximation (PN ) of (P0.05), the sample
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size N being chosen according to (1.3) (where n = 66, α = 0.05 and δ = 0.001).
eb)Tuned scenario optimal value is the optimal value in “tuned” scenario approximation, where the tun-

ing goes via appropriate reduction of the sample size N in (PN ) as compared to the one given by (1.3), with
the same purpose and in the same spirit as in the case of tuned Bernstein approximation.

f)The robust optimal value is the one given by Robust Optimization (under mild regularity assumptions,
which hold true in the case of (P ), this is the same as the optimal value in (Pα) in the case of α = 0).

g)For uncertainty level θ = 0.5 and larger, there already is no guaranteed way to get positive profit, and
the worst-case optimal policy is to put everything in money, thus avoiding losses and getting zero profit.

Discussion. A. As far as the objective value is concerned, Bernstein approximation out-
performs the (non-tuned) scenario approximation; the same is true for the tuned versions of the
procedures (this is consisted with all other numerical experiments we have run, including those for
test problems of different structure). The differences, although not large, are not negligible: for
tuned approximations, they are 3.0% for θ = 0.2, 4.2% for θ = 0.5, and 10.0% for θ = 1.0.

B. Additional good news about Bernstein approximation is that even with tuning, this still is an
implementable routine: the solution and the optimal value in (3.4), (2.16) are well-defined functions
of α, and the resulting value of the objective is the better the larger is α. Consequently, tuning
becomes an easy-to-implement routine, a kind of bisection: we solve (3.4), (2.16) for certain value
of α and check the actual risk of the resulting solution; if it is worse then necessary, we decrease
α in (3.4), otherwise increase it. In contrast to this, the optimal value and the optimal solution of
scenario approximation with a given sample size are random. For not too large sample sizes, the
variability of these random entities is high, which makes tuning difficult. To get an impression of
this phenomenon, here are the results for several realizations of the scenario approximation at the
uncertainty level θ = 1; the sample sizes correspond to the final phase of tuning.

## N
Optimal

value
Empirical

risk
Inferred

risk
1 900 0.0066 0.000 0.0007
2 900 0.0380 0.045 0.0517
3 900 0.0384 0.052 0.0595
4 900 0.0017 0.000 0.0007
5 900 0.0379 0.052 0.0591
6 900 0.0393 0.065 0.0726
7 900 0.0933 1.000 1.0000
8 1000 0.0377 0.048 0.0546
9 1000 0.0369 0.039 0.0456
10 1000 0.0378 0.054 0.0609

We see that with sample size 900, one can get “nearly whatever”, with profits ranging from some-
thing very close to 0 to nearly the nominal optimal value, and with similarly wide range of risks;
sample size 1000 may produce more risky solutions than sample size 900, etc. As the result, seeking
for good and reliable solution by tuning the scenario approximation becomes a kind of lottery.

C. For large sample sizes, the results yielded by scenario approximation are more stable, and
at the same time more conservative (compare the results for non-tuned Bernstein and scenario
approximations in Table 1).
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D. It should be added that Bernstein approximation (at least in its non-tuned form) remains
practical in the case of very small risks α and/or high design dimension, that is, in situations
where the scenario approximation requires samples of unrealistic sizes. To get an impression of the
numbers, assume that we want α as small 0.5% or even 0.1%, while the reliability 1 − δ of our
conclusions (which in previous experiments was set to 0.999) is now increased to 0.9999. In this
case the scenario approximation becomes completely impractical. Indeed, the theoretically valid
sample size given by (1.3) becomes 209,571 for α = 0.5% and 1,259,771 for α = 0.1%, which is
a bit too much. Using smaller sample sizes plus tuning also is problematic, since it becomes too
complicated to test the risk of candidate solutions by simulation. For example, with α = 0.005
and α = 0.001, it takes over 100,000 simulations to conclude, with reliability 0.9999, that a given
candidate solution which in fact is feasible for (P0.9α) is feasible for (Pα).

• At the same time, Bernstein approximation with no tuning is 100% reliable, remains of the
same complexity independently of how small is α, and at the uncertainty level 0.5 results in the
profits as follows:

• 0.0421 for α = 0.5%
• 0.0395 for α = 0.1%.

This is not that bad, given that the robust optimal value in our situation is 0.

The bottom line, as suggested by the experiments (and us such, not conclusive yet) is as follows:

The scenario approximation has no advantages whatsoever as compared to the Bernstein
one, provided the latter is applicable (that is, that we are in the case of affinely perturbed
convex chance constrained problem with known and simple enough distributions of ξj).

6 Extensions to the case of ambiguous chance constraints and
mixed uncertainty models

As it was mentioned in Introduction, one of the basic problems with the formulation of chance
constrained problem (1.1) is that it assumes an exact knowledge of the underlying probability
distribution P of ξ. Therefore it appears natural to consider “robust” or minimax versions of
the chance constrained problems. That is, we assume that a plausible family P of probability
distributions, supported on a (closed) set Ξ ⊂ Rd, can be identified, and that we only know that
the true distribution P belongs to P. This leads to the following formulation of chance constrained
problems:

Min
x∈X

f(x) subject to ProbP

{
F (x, ξ) ≤ 0

} ≥ 1− α, ∀P ∈ P, (6.1)

where the notation ProbP means that the probability of the corresponding event is taken with
respect to the distribution P of ξ.

Of course, we can replace the probability constraints in (6.1) with one constraint by taking the
minimum of ProbP

{
F (x, ξ) ≤ 0

}
with respect to P ∈ P. That is, problem (6.1) is constrained with

respect to a “worst” distribution of the considered family P. We can also write the probability
constraints of (6.1) in the following form:

sup
P∈P

EP [1lAx ] ≤ α, (6.2)
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where Ax := {ξ ∈ Ξ : F (x, ξ) 6≤ 0}. The “worst-case-distribution” (or minimax) stochastic pro-
gramming problems were considered in a number of publications (e.g., [10, 25]). When applied to
chance constraints, such worst-case-distribution problems are called ambiguous chance constrained
problems (see [11] and references therein).

For some families of distributions the maximum in the left hand side of (6.2) can be calculated
explicitly. With every family P of probability distributions is associated the function

ρ(Z) := sup
P∈P

EP [Z] (6.3)

defined on a space of real-valued random variables Z. Formula (6.3) describes a dual representation
of so-called coherent risk measures introduced by Artzner et al [1]. Consider now the following
family:

P :=
{
P : γ1P

∗ ¹ P ¹ γ2P
∗, P (Ξ) = 1

}
. (6.4)

Here γ1 and γ2 are constants such that 0 ≤ γ1 ≤ 1 ≤ γ2, P ∗ is a (reference) probability distribution
on Ξ and the notation P1 ¹ P2 means that for two (not necessarily probability) Borel measures P1

and P2 on Ξ it holds that P1(A) ≤ P2(A) for any Borel set A ⊂ Ξ. The constraint P (Ξ) = 1 in
(6.3) is written to ensure that P is a probability measure. This family P defines a coherent risk
measure, which can be written in the following equivalent form

ρ(Z) = E[Z] + inf
τ∈R

E [(1− γ1)[τ − Z]+ + (γ2 − 1)[Z − τ ]+] , (6.5)

where all expectations are taken with respect to the reference distribution P ∗. In particular, for
γ1 = 0 and κ := (γ2 − 1)/γ2,

ρ(Z) = CVaRκ[Z]

(cf., [21, 22]).
By the definition (6.4) of P we have that EP [1lAx ] ≤ γ2P

∗(Ax) for any P ∈ P, with the equality
holding if P (Ax) = γ2P

∗(Ax). Since P (Ξ) = 1, this can be achieved iff γ2P
∗(Ax)+γ1(1−P ∗(Ax)) ≤

1, i.e., iff P ∗(Ax) ≤ 1−γ1

γ2−γ1
. We obtain the following.

If α ≤ (1 − γ1)/(γ2 − γ1), then the ambiguous chance constrained problem (6.1) with
P given by (6.4) is equivalent to the chance constrained problem (1.1) with respect to
the reference distribution P ∗ and with rescaled risk α ← α∗ := α/γ2.

Another popular example of a coherent risk measure is the mean-upper-absolute semideviation

ρ(Z) := E[Z] + cE
([

Z − E[Z]
]
+

)
, (6.6)

where c ∈ [0, 1] is a constant and the expectations are taken with respect to a reference distribution
P ∗. It has the dual representation (6.3) with the corresponding family

P =
{
ζ ′ : ζ ′ = 1 + ζ − E[ζ], ‖ζ‖∞ ≤ c

}
, (6.7)

where ζ ′ = dP/dP ∗ denotes the density of P with respect to P ∗ (cf., [22]). By using the definition
(6.6) it is straightforward to calculate that

ρ (1lAx) = P ∗(Ax) + 2cP ∗(Ax)(1− P ∗(Ax)). (6.8)
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By solving the quadratic inequality t+2ct(1−t) ≤ α for t = P ∗(Ax), we obtain that P ∗(Ax) ≤ ϕ(α),
where

ϕ(α) :=
1 + 2c−

√
1 + 4c(1− 2α) + 4c2

4c

for c ∈ (0, 1], and ϕ(α) = α if c = 0. (Note that for α ∈ (0, 1) and c ∈ (0, 1], it always holds that
ϕ(α) ∈ (0, α).) We obtain the following.

The ambiguous chance constrained problem (6.1) with P given by (6.7) is equivalent to
the chance constrained problem (1.1) with respect to the reference distribution P ∗ and
with rescaled reliability parameter α ← α∗ := ϕ(α).

Of course, such explicit reduction of the ambiguous chance constrained problem (6.1) to the
regular chance constrained problem (1.1) is possible only for some specific families P. In the next
section we discuss a different approach which can be viewed as a combination of chance constraints
and robust approaches.

6.1 Mixed uncertainty model

Below we extend Bernstein approximation to the case of a more general chance constrained problem
than the affinely perturbed convex one introduced in section 3.

Consider an uncertain optimization problem where our goal is to minimize a convex objective
f(x) over a part cut off a given convex set X by a system of constraints (cf. (1.7))

fi0(x) +
d∑

j=1

ζjfij(x) ≤ 0, i = 1, ..., m, (6.9)

where ζj are uncertain coefficients. In contrast to the situation of section 3, where the coefficients
were assumed to be independent random variables with known distributions, now we intend to con-
sider the mixed uncertainty model where “the nature” generates vector ζ = (ζ1, ..., ζd) of uncertain
coefficients in two stages:

• At the first stage, a realization ξ̄ of d-dimensional random vector ξ is generated;

• At the second stage, a point η from a given uncertainty set U ⊂ Rd is picked, and ζ is formed
as ζ = ξ̄ + η.

Note that we do not assume that the distribution P of the random component ξ in ζ is known
exactly. All that we assume is that P belongs to a known family P of probability distributions on
Rd. As about the uncertainty set U , it is assumed to be a known in advance nonempty compact
set.

Let us understand what could be a natural definition of a “chance constrained” version of the
uncertain problem in question. Let x̄ ∈ X be a fixed candidate solution to the problem. To pass
from problem with uncertainty-affected constraints (6.9) to its usual chance constrained version
(corresponding to the case when U = {0} and the distribution of ζ ≡ ξ is known), we proceed as
follows.

(a) We treat a realization ξ̄ of vector ξ of random perturbations as “compatible” with x̄, if
x̄ satisfies all the constraints (6.9) with the vectors of coefficients ζ corresponding to ξ̄ (in the
situation in question, the latter merely means that ζ = ξ̄).
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(b) We claim x̄ to be feasible for the chance constrained version of our uncertain problem, if
the probability mass of realizations ξ̄ compatible with x̄ is at least 1− α.

Let us follow the same line of reasoning in our current situation. First of all, we should under-
stand when a particular realization ξ̄ of ξ is compatible with a given candidate solution x̄. Exactly
as above, let us interpret the compatibility as the fact that x̄ is feasible for the system of constraints
(6.9), whenever ζ corresponds to ξ̄, that is, whenever ζ = ξ̄ + η with η ∈ U (since we assume no
random mechanism for picking η from U , this worst-case-oriented version of compatibility between
x̄ and ξ̄ seems to be the only meaningful one). With our interpretation of compatibility, it is
immediately seen that x̄ and ξ̄ are compatible if and only if x̄ satisfies the system of constraints

max
η∈U



fi0(x) +

d∑

j=1

(
ξ̄j + ηj

)
fij(x)



 ≤ 0, i = 1, ..., m, (6.10)

or, which is exactly the same, if and only if x̄ is feasible for the system of constraints

f̂i0(x) +
d∑

j=1

ξ̄jfij(x) ≤ 0, i = 1, ..., m, (6.11)

where

f̂i0(x) := fi0(x) + max
η∈U

d∑

j=1

ηjfij(x). (6.12)

Now, if we knew the true distribution P of ξ, we, same as in (b), could qualify x̄ as a feasible
solution of the chance constrained version of our uncertain problem exactly when

ProbP



f̂i0(x̄) +

d∑

j=1

ξjfij(x̄) ≤ 0, i = 1, ..., m



 ≥ 1− α.

The only meaningful way to extend the latter step to the case when all our knowledge of P is that
P ∈ P is to invoke again the worst-case approach, that is, to require from x̄ to satisfy the latter
inequality for every P ∈ P. We arrive at the following definition of a chance constrained version
of uncertain problem with mixed uncertainty:

Min
x∈X

f(x) s.t. inf
P∈P

ProbP



ξ : f̂i0(x) +

d∑

j=1

ξjfij(x) ≤ 0, i = 1, ..., m



 ≥ 1− α, (6.13)

where f̂i0(x) is defined by (6.12).

Remark 4 The construction we have presented is a straightforward mixture of two ingredients
known from the literature. The first ingredient is “chance constrained optimization with ambigu-
ous chance constraints” (see, e.g., [11]), that is, the chance constrained problem with not known
exactly distribution of uncertain parameters, where the probabilities with respect to (unknown)
“true” distribution of the uncertain data are replaced with their worst case values at a given set of
“potentially true” distributions. The second ingredient is Robust Optimization (see, e.g., [3]); this
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is the case with no random component in the uncertain data (formally, P := {P} is a singleton,
and P is the trivial distribution on Rd – unit mass at the origin). In this case, all probabilities
disappear, and (6.13) becomes the problem

Min
x∈X

f(x) s.t. f̂i0(x) ≤ 0, i = 1, ..., m,

called the Robust Counterpart of the original uncertain problem.

6.2 Bernstein approximation of a chance constrained problem with mixed un-
certainty model

We are about to build Bernstein approximation of problem (6.13).

Assumptions. From now on, we make the following assumptions about the “data” of (6.13):

B1. Uncertainty set U is given in advance and is convex, compact, nonempty and “computationally
tractable”. In our context, the latter means that we can optimize efficiently linear objectives
over U (for example, U can be a nonempty compact polyhedral set: {η : ∃u : Aη+Bu+r ≤ 0}).

B2. The family P of possible distributions of the random component ξ in ζ is as follows. Let Dj ,
j = 1, ..., d, be nonempty compact subsets of the axis, and M be a nonempty set of tuples
{Pj}d

j=1, where Pj are Borel probability measures on Dj . We assume that

• whenever {Pj}d
j=1, {P ′

j}d
j=1 are two elements from M, so is {λPj + (1−λ)P ′

j}d
j=1, λ ∈ [0, 1]

(convexity), and

• whenever a sequence {P t
j }d

j=1, t = 1, 2, ... of elements of M w∗-converges to {Pj}d
j=1 (mean-

ing that
∫

f(s)dP t
j (s) →

∫
f(s)dPj(s) as t →∞ for every j and every continuous on the axis

function f with compact support), then {Pj}d
j=1 ∈M (w∗-closedness).

We assume that P is comprised of all product distributions P = P1× ...×Pd on Rd with the
tuple of marginals {Pj}d

j=1 running through a given set M with the outlined properties.
¿From now on, we equip the set M underlying, via the outlined construction, the set P in
question with the w∗-topology; it is well known that under the above assumptions this topol-
ogy is yielded by an appropriate metrics on M, and that with this metrics, M is a compact
metric space.

The simplest example of a set P of the outlined structure is as follows. Let Dj be

finite subsets of R, let ∆ :=
d⋃

j=1
Dj = {s1, ..., sK}, and let M be a closed and convex

set of matrices P = [pkj ] 1≤k≤K
1≤j≤d

with nonnegative entries such that
∑
k

pkj = 1 for

all j and pkj = 0 whenever sk 6∈ Dj . For every P ∈ M, j-th column Pj of P can
be naturally identified with a probability distribution on Dj ; the set P generated
by M is comprised of all product distributions P1 × ...× Pd coming from matrices
P ∈M.

¿From now on, we denote a generic element of M by Q = {Qj}d
j=1.
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B3. The objective f(x) and all functions fij(x), i = 1, ..., m, j = 0, 1, ..., d are convex and well-
defined on X. Moreover, let

J = {j : 1 ≤ j ≤ d, not all functions fij , i = 1, ..., m, are affine}.

We assume that whenever j ∈ J , the quantities ξj and ηj “always are nonnegative”, that is,
for every j ∈ J

— j-th marginal distribution of every P ∈ P is supported on the nonnegative ray, and

— all points η ∈ U satisfy ηj ≥ 0
(cf. assumption A3 in section 3).

Building Bernstein approximation. Let

g(r) = max
η∈U

ηT r,

so that g(·) is a well-defined convex function by B1. Now, let J be the set of those indices j,
1 ≤ j ≤ d, for which not all of the functions fij(x), i = 1, ..., m, are affine. By B3, the function g is
nondecreasing in every one of the coordinates rj with j ∈ J . From these observations and B1, B3
it follows that the functions hi(x) (and then f̂i0(x)) given by (6.11) are convex and well-defined on
X.

For P = P1 × ... × Pd, let P̂ be the tuple {Pj}d
j=1, so that when P runs trough P, P̂ runs

through M.
Let

Φ(z,Q) := log

(
EQ1×...×Qd

[
exp{z0 +

d∑
j=1

ξjzj}
])

= z0 +
d∑

j=1
log

(∫
exp{zjs}dQj(s)

)
, Q = {Qj}d

j=1 ∈M,

Φ̂(z) := max
Q∈M

Φ(z, Q).

(6.14)

By B2, Φ(z, Q) is well-defined and continuous function of (z, Q) ∈ Rd+1 ×M (recall that M is
equipped with w∗-topology). From (6.14) it is also evident that Φ(z,Q) is convex in z ∈ Rd+1 and
concave in Q ∈M. From these observations and the compactness of M it follows that Φ̂(z) is well
defined everywhere and is convex. Finally, from B3 it follows that Φ(z, Q) (and therefore Φ̂(z)) is
nondecreasing in z0 and in every zj with j ∈ J .

Now let
ΘQ(z, t) = tΦQ(t−1z), Θ̂(z, t) = tΦ̂(t−1z),

so that ΘQ(z, t) and Θ̂(z, t) are well defined convex functions in the domain t > 0. Same as in
section 3, for every β ∈ (0, 1) and every z ∈ Rd+1 we have

inf
t>0

[
Θ

P̂
(z, t)− t log β

] ≤ 0 implies ProbP



z0 +

d∑

j=1

ξjzj > 0



 ≤ β,
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and we arrive at the implication:

P (β) :
{
∀Q ∈M : inf

t>0
[ΘQ(z, t)− t log β] ≤ 0

}

implies that

Q(β) : sup
P∈P

ProbP

{
z0 +

d∑
j=1

ξjzj > 0

}
≤ β.

(6.15)

We are about to replace (6.15) with an equivalent and more convenient computationally implication:

P̂ (β) :
{

inf
t>0

[
Θ̂(z, t)− t log β

]
≤ 0

}

implies that

Q(β) : sup
P∈P

ProbP

{
z0 +

d∑
j=1

ξjzj > 0

}
≤ β.

(6.16)

The advantage of (6.16) as compared to (6.15) is that the premise in the latter implication is semi-
infinite: to verify its validity, we should check certain condition for every Q ∈ M. In contrast to
this, the premise in (6.16) requires checking validity of a univariate convex inequality, which can
be done by bisection, provided that the function Θ̂ is efficiently computable. The latter condition
is equivalent to efficient computability of the function Φ̂(z), which indeed is the case when M is
not too complicated (e.g., is finite-dimensional and computationally tractable).

The validity of (6.16) and the equivalence of (6.15) and (6.16) are given by the following lemma.

Lemma 1 Let 0 < β < 1. Then the following holds:

P̂ (β) if and only if P (β). (6.17)

Proof. Implication ⇒ in (6.17) is evident, since Θ̂(z, t) = max
Q∈M

ΘQ(z, t). Note that this

implication combines with (6.15) to imply the validity of (6.16).
Now let us prove the implication ⇐ in (6.17). This is a straightforward consequence of the fact

that ΘQ(z, t) is concave in Q and convex in t > 0; for the sake of completeness, we present the
corresponding standard reasoning.

As we remember, Φ(z,Q) is continuous and concave in Q ∈ M; since ΘQ(z, t) = tΦ(t−1z, Q), the
function ΘQ(z, t) is continuous in (t > 0, Q ∈ M) and concave in Q; the fact that this function is convex
in t > 0 is already known to us. Now let P (β) be valid, and let us prove the validity of P̂ (β). Let us fix z
and set θ(t,Q) = ΘQ(z, t)− t log β, and let γ > 0. By P (β), for every Q ∈ M there exists tQ > 0 such that
θ(t,Q) < γ. Since θ(t,Q) is continuous in Q ∈ M, there exists a neighborhood (in M) VQ of the point Q
such that θ(tQ, Q′) ≤ γ ∀Q′ ∈ VQ. Since M is a compact set, there exist finitely many points Qi ∈ M such
that the corresponding neighborhoods VQi cover the entire M. In other words, there exist finitely many
positive reals t1, ..., tN such that

min
1≤i≤N

θ(ti, Q) ≤ γ, ∀Q ∈M. (6.18)

Since θ is concave and continuous in Q ∈M and M is convex, (6.18) implies that

∃λ∗ ∈ ∆N :=

{
λ ∈ RN

+ :
∑

i

λi = 1

}
:
∑

i

λ∗i θ(ti, Q) ≤ γ, ∀Q ∈M. (6.19)
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The latter conclusion is a standard fact of Convex Analysis. For the sake of a reader uncomfort-
able with possible infinite dimension ofM, here is a derivation of this fact from the standard von
Neumann lemma. For Q ∈ M, let ΛQ be the set of those λ ∈ ∆N for which

∑
i

λiθ(ti, Q) ≤ γ;

the set ΛQ clearly is a closed subset of the finite-dimensional compact ∆N . All we need is to
prove that all these sets have a point in common (such a point can be taken as λ∗), and to
this end it suffices to prove that all sets ΛQ from a finite family ΛQ1 , ..., ΛQM

, Qj ∈ M, have
a point in common. But the latter is readily given by the von Neumann Lemma as applied to
the convex hull QN of the points Qj , j = 1, ...,M (which is a finite-dimensional convex compact
set):

γ ≥ max
Q∈QN

min
λ∈∆N

N∑

i=1

λiθ(ti, Q) = min
λ∈∆N

max
Q∈QN

N∑

i=1

λiθ(ti, Q)

(the inequality is given by (6.18), the equality – by von Neumann Lemma; the required point

in
⋂
i

ΛQi is argmin
λ∈∆N

max
Q∈QN

N∑
i=1

λiθ(ti, Q)).

Since θ is convex in t > 0, setting tγ =
∑
i

λ∗i ti we get from (6.19) that ΘQ(tγ , z)− tγ log β ≡ θ(tγ , Q) ≤
∑
i

λ∗i θ(ti, Q) ≤ γ for all Q ∈ M, whence Θ̂(tγ , z) − tγ log β ≡ max
Q∈M

ΘQ(tγ , z) − tγ log β ≤ γ. Since tγ is

positive by construction and γ > 0 is arbitrary, we conclude that inf
t>0

[
Θ̂(tγ , z)− tγ log β

]
≤ q0, so that P̂ (β)

is valid. ¥

Putting things together, we arrive at the following result.

Theorem 1 Assume that chance constrained problem (6.13) with mixed uncertainty satisfies As-
sumptions B1 – B3, and let αi, i = 1, ...,m, be positive reals such that

∑
i

αi ≤ α. Then the
program

Min
x∈X

f(x) s.t. inf
t>0

[
f̂i0(x) + tΨ̂(t−1zi[x])− t log αi

]

︸ ︷︷ ︸
gi(x,t)

≤ 0, i = 1, ..., m,

zi[x] = (fi1(x), ..., fid(x)), f̂i0 = fi0(x) + max
η∈U

ηT zi[x],

Ψ̂(z) = max
{Qj}d

j=1∈M

d∑
j=1

log
(∫

exp{zjs}dQj(s)
)

(6.20)

is a conservative approximation of problem (6.13): every feasible solution to the approximation
is feasible for the chance constrained problem. This approximation is a convex program and is
efficiently solvable, provided that all fij and Ψ̂ are efficiently computable, and U and X are com-
putationally tractable.

Proof. Function gi(x, t) is obtained from the function θi(z, t) := Θ̂(z, t) − t log αi by the
substitution

(z, t) ← ((f̂i0(x), fi1(x), ..., fid(x)), t).

The outer function θi(z, t) is convex and nondecreasing in z0 and every zj with j ∈ J (see remarks
following (6.14)). The inner functions f̂i0(x), fij(x), j ≥ 1, are convex on X, and functions fij(x)
with 0 < j 6∈ J are affine. It follows that gi(x, t) is convex in (t > 0, x ∈ X), so that (6.20) is indeed
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a convex program. Further, if x is feasible for (6.20), then x ∈ X, and for every i the predicate
P̂ (αi) corresponding to z = (f̂i0(x), fi1(x), ..., fid(x)) is valid, which, by (6.16), implies that

sup
P∈P

ProbP



f̂i0(x) +

d∑

j=1

ξjfij(x) > 0



 ≤ αi.

Since
∑
i

αi ≤ α, x is feasible for (6.13). ¥

Remark 5 Assumption B2 requires, among other things, from all distributions P ∈ P to be
supported on a common compact set D1 × ... × Dd. This requirement can be straightforwardly
relaxed to the requirement for all P ∈ P to have “uniformly light tails”: there exists a function
γ(t), t > 0, such that exp{αt}γ(t) → 0 as t → ∞ for all α, and for every Q = {Qj} ∈ M, every j
and every t > 0 one has Qj({s : |s| ≥ t}) ≤ γ(t).

Examples. We have seen that the presence of “uncertain but bounded” component η ∈ U in
the vector of uncertain coefficients in (6.9) does not affect the structure of the chance constrained
problem (6.13) (to take into account the η-component of the uncertainty, we should just augment
properly the “deterministic parts” fi0(x) of the constraints). By this reason, in the examples to
follow we focus on the case of “purely (ambiguous) stochastic” uncertainty, where U = {0}. Besides
this, in order not to care of nonnegativity of ξj associated with non-affine fij(·), we assume from
now on that all functions fij , j = 1, ..., d, are affine.
Example 1: range information on ξj . Assume that all we know about the distributions of ξ is that ξj

take values in given finite segments (and, as always, that ξ1, ..., ξd are independent). By shifting and
scaling fij(x), we can assume without loss of generality that ξj are independent and take values in
[−1, 1]. This corresponds to the case where M is the set of all d-element tuples of Borel probability
distributions supported on [−1, 1]. Denoting by Π the set of all Borel probability measures on
[−1, 1], we have

Φ̂(z) = z0 +
d∑

j=1
max
Pj∈Π

log
(∫

exp{zjs}dPj(s)
)

= z0 +
d∑

j=1
|zj |,

Θ̂(z, t) = tΦ̂(t−1z) = z0 +
d∑

j=1
|zj |;

consequently, approximation (6.20) becomes

Min
x∈X

f(x) s.t. inf
t>0


fi0(x) +

d∑

j=1

|fij(x)| − t log αi


 ≤ 0, i = 1, ...,m,

or, which is the same due to αi ≤ 1,

Min
x∈X

f(x) s.t. fi0(x) +
d∑

j=1

|fij(x)| ≤ 0, i = 1, ...,m. (6.21)
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As it could be expected, in the situation in question, Bernstein approximation recovers the Robust
Counterpart of the original uncertain problem, which, in the case of uncertain constraints (6.9) and
trivial uncertainty set U is the semi-infinite optimization program:

Min
x∈X

f(x) s.t. fi0(x) +
d∑

j=1

ξjfij(x) ≤ 0, ∀i, ∀ξ ∈
⋃

P∈P

supp(P ). (RC)

It is clear that in the extreme case we are considering the approximation is exactly equivalent to the
chance constrained problem (6.13). A relatively good news about Bernstein approximation (6.21)
is that it in our example it is no more conservative than Robust Counterpart. It is immediately
seen that this is a general fact: whenever Bernstein approximation (6.20) is well defined, its feasible
set contains the feasible set of (RC).

We see that when all our knowledge on uncertainty is the ranges of ξj (and the fact that they are
independent), both the chance constrained problem (6.13) itself and its Bernstein approximation
become the completely worst-case oriented Robust Counterpart. The situation changes dramati-
cally when we add something to the knowledge of ranges, for example, assume that we know the
expected values of ξj .
Example 2: ranges and expectations of ξj are known. Assume that we know that ξj are indepen-
dent, take values in known finite segments and have known expectations. Same as in Example 1, we
can further assume without loss of generality that ξj vary in [−1, 1] and have known expectations
µj , |µj | ≤ 1. We are in the situation where M is the set of all tuples {Qj}d

j=1 with Qj belonging
to the family Πµj of all Borel probability distributions on [−1, 1] with expectation µj , j = 1, ..., d,
and P is the set of all product distributions on Rd with the collection of marginal distributions
belonging to M. It is easy to see that when |µ| ≤ 1, then

Λµ(t) := max
Q∈Πµ

log
(∫

exp{ts}dQ(s)
)

= log(cosh(t) + µ sinh(t)) 2)

and that Λµ(0) = 0, Λ′µ(0) = µ and Λ′′µ(t) ≤ 1 for all t, whence

Λµ(s) ≤ µs +
s2

2
, ∀s.

We therefore have

Φ̂(z) := max
P∈P

log

(
EP

{
exp{z0 +

d∑
j=1

ξjzj}
})

= z0 +
d∑

j=1
log (cosh(zj) + µj sinh(zj)) ≤ Φ̃(z) := z0 +

d∑
j=1

[
µjzj +

z2
j

2

]
,

Θ̂(z, t) := tΦ̂(t−1z) = z0 +
d∑

j=1
t log

(
cosh(t−1zj) + µj sinh(t−1zj)

)

≤ Θ̃(z, t) = z0 +
d∑

j=1
µjzj + 1

2t

d∑
j=1

z2
j .

(6.22)

2)Here is the verification: let λ = sinh(t) and g(s) = exp{ts}− λs. This function is convex and therefore takes its
maximum on [−1, 1] at an endpoint; it is immediately seen that this maximum is g(1) = g(−1) = cosh(t). It follows
that when Q ∈ Πµ, one has

∫
exp{ts}dQ(s) =

∫
g(s)dQ(s) + λµ = cosh(t) + µ sinh(t). The resulting upper bound on∫

exp{ts}dQ(s) is achieved when Q is two-point distribution with mass 1+µ
2

at 1 and mass 1−µ
2

at −1.
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To proceed, we were supposed to compute the functions

G(z, β) := inf
t>0

[
Θ̂(z, t)− t log β

]

and to write down Bernstein approximation (6.20) of ambiguous chance constrained problem in
question as the convex program

Min
x∈X

{
f(x) : G(zi[x], αi) ≤ 0, i = 1, ..., m

}
,

zi[x] = (fi0(x), fi1(x), ..., fid(x))T
(6.23)

where αi > 0 are chosen to satisfy
∑
i

αi ≤ α. While computing G(z, β) and its derivatives in zj

numerically (which is all we need in order to solve convex program (6.23) numerically) is easy, a
closed form analytic expression for this function seems to be impossible. What we can do analyt-
ically, is to bound G from above3), exploiting the simple upper bound on Θ̂ presented in (6.22).
From the concluding inequality in (6.22) it follows that

G(z, β) := inf
t>0

[
Θ̂(z, t)− t log β

]

≤ G∗(z, β) := inf
t>0

[
z0 +

d∑
j=1

µjzj + 1
2t

d∑
j=1

z2
j − t log β

]

= z0 +
d∑

j=1
µjzj +

√
2 log(1/β)

(
d∑

j=1
z2
j

)1/2

.

(6.24)

It follows that the convex optimization program

Min
x∈X





f(x) :

fi0(x) +
d∑

j=1
µjfij(x)

+
√

2 log(1/αi)

(
d∑

j=1
f2

ij(x)

)1/2

≤ 0, i = 1, ..., m





[
∑
i

αi ≤ α]

is an approximation (more conservative than Bernstein one) of the ambiguous chance constrained
problem (6.13), where the independent of each other random perturbations ξj are known to vary in
[−1, 1] and possess expected values µj . As could be expected, we have recovered (a slightly refined
version of) the results of [2] mentioned in Introduction (see (1.8)) and Remark 3.

Comparing (6.21) and (6.23) – (6.24), we clearly see how valuable could be the information on
expectations of ξj , provided that ξj are independent (this is the only case we are considering).
First of all, from the origin of G(z, β) it follows that the left hand sides of constraints in (6.21)
are pointwise ≥ their counterparts in (6.23), so that (6.23) always is less conservative than
(6.21). To see how large could be the corresponding “gap”, consider the case when all ξj

have zero means (µj = 0 for all j). In this case, i-th constraint in (6.21) requires from the
vector hi(x) := (fi1(x), ..., fid(x))T to belong to the centered at the origin ‖ · ‖1-ball of radius
ρ(x) = −fi0(x), let this ball be called V1(x). i-th constraint in (6.23), first, allows for hi(x)

3)It should be stressed that this bounding is completely irrelevant as far as numerical processing of (6.23) is
concerned; the only purpose of the exercise to follow is to link our approach with some previously known constructions.
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to belong to V1(x) (recall that (6.23) is less conservative than (6.21)) and, second, allows for
this vector to belong to the centered at the origin ‖ · ‖2-ball V2(x) of the radius κ−1ρ(x), where
κ =

√
2 log(1/αi) (see (6.24) and take into account that µj ≡ 0); by convexity, it follows that i-th

constraint in (6.23) allows for hi(x) to belong to the set V1,2(x) = Conv{V1(x)∪V2(x)} ⊃ V1(x).
When d is not small, the set V1,2(x) is not merely larger, it is “much larger” than V1(x), and,
consequently, i-th constraint in (6.23) is “much less restricting” than its counterpart in (6.21).
To get an impression of what “much larger” means, note that the distance from the origin
to the boundary of V2(x) along every direction is κ−1ρ(x); the distance to the boundary of
V1,2(x) can only be larger. At the same time, the distance from the origin to the boundary
of V1(x) along a randomly chosen direction is, with probability approaching 1 as d → ∞, at
most

√
π/2(1 + δ)d−1/2 for every fixed δ > 0. Thus, the ratio of the distances, taken along a

randomly chosen direction, from the origin to the boundaries of V1,2(x) and of V1(x) is always

≥ 1, and with probability approaching 1 as d → ∞, is at least (1−δ)
√

2d/π

κ for every δ > 0; in

this sense V1,2 is “at average” nearly
√

2d/π

κ times larger in linear sizes than V1(x). Now, for all
practical purposes κ is a moderate constant4); thus, we can say that as d grows, approximation
(6.23) becomes progressively (“by factor

√
d”) less conservative than (6.21).

Coming back to our examples, observe that if M = Π1× ...×Πd where Πj is a given set in the
space of Borel probability distributions on the axis, we have

Φ̂(z) = z0 +
d∑

j=1

max
Q∈Πj

log
(∫

exp{zjs}dQ(s)
)

,

and therefore computation of Φ̂(z) (which is all we need in order to build Bernstein approximation)
reduces to computing the functions ΛΠ(t) ≡ max

Q∈Π
log

(∫
exp{ts}dQ(s)

)
for Π = Π1, ...,Πd. In Table

2, we present explicit expressions for ΛΠ(·) for a number of interesting sets Π. In the table Mean[Q],
Var[Q] stand for the mean

∫
sdQ(s) and the second moment

∫
s2dQ(s) of distribution Q; to save

4)With αi = α/m, even risk as small as α =1.e-12 and the number of constraints as large as m = 10, 000, 000
result in κ ≤ 9.4.
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notation, we present the expressions for exp{ΛΠ(t)} rather than for ΛΠ itself.

Π exp{ΛΠ(t)}
{Q : supp(Q) ⊂ [−1, 1]} exp{|t|}{
Q :

supp(Q) ⊂ [−1, 1]
Q is symmetric

}
cosh(t)

{
Q :

supp(Q) ⊂ [−1, 1], Q is
unimodal w.r.t. 0a)

}
exp{|t|} − 1

|t|{
Q :

supp(Q) ⊂ [−1, 1], Q is unimodal
w.r.t. 0 and symmetric

}
sinh(t)

t{
Q :

supp(Q) ⊂ [−1, 1]
Mean[Q] = µ

}
cosh(t) + µ sinh(t)

{
Q :

supp(Q) ⊂ [−1, 1]
µ− ≤ Mean[Q] ≤ µ+

}
cosh(t) + max [µ− sinh(t), µ+ sinh(t)]



Q :

supp(Q) ⊂ [−1, 1]
Mean[Q] = 0
Var[Q] ≤ σ2





exp{−|t|σ2}+ σ2 exp{|t|}
1 + σ2

{
Q :

supp(Q) ⊂ [−1, 1], Q is
symmetric, Var[Q] ≤ σ2

}
σ2 cosh(t) + (1− σ2)



Q :

supp(Q) ⊂ [−1, 1]
Mean[Q] = µ
Var[Q] ≤ σ2









(1−µ)2 exp{t µ−σ2

1−2µ+σ2 }+(σ2−µ2) exp{t}
1−2µ+σ2 , t ≥ 0

(1+µ)2 exp{t µ+σ2

1+2µ+σ2 }+(σ2−µ2) exp{−t}
1+2µ+σ2 , t ≤ 0

a) Q is unimodal w.r.t. 0, if Q is the sum of two measures: a mass at 0 and a measure with density p(s)
which is nondecreasing when t ≤ 0 and nonincreasing when t ≥ 0

Table 2: exp{ΛΠ(·)} for several families Π of univariate distributions.
the parameters µ, σ2 are subject to natural restrictions |µ| ≤ 1, σ2 ≤ 1, µ2 ≤ σ2.

Fig. 1 illustrates the contents of Table 2.
We could proceed in the same fashion, adding more a priori information on the distribution of

ξ; until this information becomes too complicated for numerical processing, it can be “digested”
by Bernstein approximation. Instead of moving in this direction, we prefer to present example of
another sort, where the assumptions underlying Theorem 1 are severely violated, but Bernstein
approximation scheme still works.
Example 3: parametric uncertainty. Assume that we know a priori that some of ξj are normal,
and the remaining ones are Poisson; however, we do not know exactly the parameters of the
distributions. Specifically, let us parameterize normal distribution by its mean and variance (note:
variance, not standard deviation!), and Poisson one – by its natural parameter λ (so that the
probability for the corresponding random variable to attain value i = 0, 1, ... is λi

i! exp{−λ}). Let
us arrange parameters of the d distributions in question in a vector ω, and assume that our a priori
knowledge is that ω belongs to a known in advance convex compact set Ω. We assume also that
the latter set is “realizable” in the sense that every point ω ∈ Ω indeed represents a collection of
distributions of the outlined type; specifically, the coordinates of ω ∈ Ω which represent variances
of normal distributions and the parameters of the Poisson distributions are positive. Note that
our a priori knowledge is incompatible with assumption B2: convexity in the space of parameters
has small in common with convexity in the space of distributions. For example, when the mean
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The plots summarize the results of the following numerical experiment. We choose somehow a (d + 1)-dimensional
vector z = (z0, ..., zd)T , normalize it by shifting and scaling to ensure that

max
ξ:‖ξ‖∞≤1

[z0 +

d∑
j=1

ξjzj

]
= 0, min

ξ:‖ξ‖∞≤1
[z0 +

d∑
j=1

ξjzj

]
= −1,

and consider the family of shifts zs = (z0 + s, z1, z2, ..., zd)T of the vector. Our goal is to bound from above,

via Bernstein bounding scheme, the quantity p(s) = max
Pj∈Π,1≤j≤d

ProbP1×...×Pd

{
χs(ξ) > 0

}
, where χs(ξ) = z0 +

s +
d∑

j=1

ξjzj and Π is a given family of probability distributions on [−1, 1]. The corresponding Bernstein bound is

exp
{

inft>0

[
t−1(z0 + s) +

∑d
j=1 ΛΠ(t−1zj)

]}
.

We vary the shift s in (0, 1); note that with our normalization of z, χs(ξ) is nonpositive on the box [−1, 1]d iff s ≤ 0

and is nonnegative on the box iff s ≥ 1. The plots display, for several choices of Π, the Bernstein bound on p(s) as

a function of s ∈ (0, 1). The left plot corresponds to d ≡ dim ξ = 10, the right plot - to d = 50. To reduce the size

of the plots along the y-axis, the bounds were truncated below at the level 10−14. The families Π underlying the

bounds are as follows:
curve Π

4 {Q : supp(Q) ⊂ [−1, 1], Mean[Q] = 0, Var[Q] ≤ 0.04}
¤ {Q : supp(Q) ⊂ [−1, 1], Q is symmetric and unimodal w.r.t. 0}
o {Q : supp(Q) ⊂ [−1, 1], Q is unimodal w.r.t. 0}
∗ {Q : supp(Q) ⊂ [−1, 1], Q is symmetric}a)

♦ {Q : supp(Q) ⊂ [−1, 1], |Mean[Q]| ≤ 0.2}
a)the same bound corresponds to Π = {Q : supp(Q) ⊂ [−1, 1], Mean[Q] = 0}

The bound corresponding to Π = {Q : supp(Q) ⊂ [−1, 1]} in the interval −1 < s < 1 is ≡ 1. We see how valuable

additional information on the distributions of ξj can be: the right plot says that when all we know about ξj , aside

of their independence, is that they are with zero means (or that they are symmetrically distributed), the guaranteed

upper bound on the probability for χ0.3(ξ) to be positive is 0.0437. When we know in addition that the standard

deviations of ξj are ≤ 0.2, the bound improves to 2.3e-11 !

Figure 1: Dependence of the Bernstein bound on a priori information.
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of a normal distribution with unit variance runs through a given segment, the distribution itself
moves along a complicated curve. We, however, can try to use the same approach which led us to
Theorem 1. Observe that when Pj is the Poisson distribution with parameter λ, we have

log
(∫

exp{rs}dPj(s)
)

= log

( ∞∑

i=0

(λer)i

i!
exp{−λ}

)
= log(exp{λer − λ}) = λ exp{r} − λ;

the resulting function is continuous, convex in r, as it always is the case for the logarithmic moment
generating function, and is concave in λ, which is pure luck. We are equally lucky with the normal
distribution Pj with mean µ and variance ν:

log
(∫

exp{rs}dPj(s)
)

= log
(

1√
2πν

∫
exp{rs− (s− µ)2

2ν
}ds

)
= rµ +

r2ν

2
,

and the result again is continuous, convex in r and concave in (µ, ν). It follows that if Pω is the
joint distribution of the sequence of d normal/Poisson independent random variables ξj , the vector
of parameters of the marginal distributions being ω, then, for every vector z ∈ Rd+1, the function

Φω(z) = log


EP ω


exp{z0 +

d∑

j=1

ξjzj}






is given by a simple explicit expression, is continuous in (z ∈ Rd+1, ω ∈ Ω), and is convex in z and
concave (in fact even affine) in ω. We now can use the reasoning which led us to Theorem 1 and
(6.20) to conclude that the optimization problem

Min
x∈X

f(x) s.t. inf
t>0

[
tΦ̂(t−1zi[x])− t log αi

]
≤ 0, i = 1, ..., m,

Φ̂(z) = max
ω∈Ω

Φω(z), zi[x] = (fi0(x), fi1(x), ..., fid(x))

is an approximation of the ambiguous chance constrained problem under consideration, provided
that αi ∈ (0, 1) are such that

∑
i

αi ≤ α. This approximation is convex, provided that all functions

fij are convex and well defined on X and the functions fij with j’s corresponding to normally
distributed components in ξ are affine. Finally, our approximation is computationally tractable,
provided that Φ̂(·) is efficiently computable (which indeed is the case when Ω is computationally
tractable).
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